AI & Medicine

  • Seunghyun Lee [CV]
  • 분류 전체보기 (111)
    • BIOMEDICINE (10)
      • Diabetes (8)
      • Neuroscience (2)
    • AI & RL (64)
      • Meta & Multi-Task RL (11)
      • Foundation Model (4)
      • Representation Learning (8)
      • Causal Inference (16)
      • Privacy-Enhancing Tech. (1)
      • Reinforcement Learning (6)
      • Real-world (Safe) RL (6)
      • Recommender System (6)
      • Model-based RL (1)
      • Human-in-the-Loop RL (2)
      • Combinatorial Opt. (2)
    • MEDICAL & HEALTHCARE AI (28)
    • PERSONAL PROJECTS (9)
      • CV (1)
      • Awards & Honours (2)
      • Book Publications (1)
      • Research Publications (4)
      • Side Projects (1)
    / /

    [북마크] Learning "What-if" Explanations for Sequential Decision-Making (Ioana Bica, ICLR 2021)

    2022. 1. 27. 23:24

    Author: Ioana Bica, Daniel Jarrett, Alihan Hüyük, Mihaela van der Schaar
    Paper Link: https://openreview.net/forum?id=h0de3QWtGG 

    Talk in ICLR2021: https://iclr.cc/virtual_2020/poster_BJg866NFvB.html

    Rating: 8, 7, 6, 5

    'AI & RL > Causal Inference' 카테고리의 다른 글

    [요약] Shaking the foundations: delusions in sequence models for interaction and control (Pedro A. Ortega, ArXiv 2021)  (0) 2022.02.11
    [정리] Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders (Ioana Bica, ICML 2020)  (0) 2022.02.07
    [참고자료] Heterogeneous Treatment Effect Estimation using machine learning for Healthcare application: tutorial and benchmark (김예진 교수님)  (0) 2022.01.25
    [북마크] Counterfactual Randomization:Rescuing Experimental Studies from Obscured Confounding (Andrew Forney, AAAI 2019)  (0) 2022.01.24
    [북마크] Estimating counterfactual treatment outcomes over time through adversarially balanced representations (Ioana Bica, ICLR 2020 Spotlight)  (0) 2022.01.20

    + Recent posts

    Powered by Tistory, Designed by wallel
    Rss Feed and Twitter, Facebook, Youtube, Google+

    티스토리툴바