Author : Shishir Rao, Mohammad Mamouei, Gholamreza Salimi-Khorshidi, Yikuan Li, Rema Ramakrishnan, Abdelaali Hassaine, Dexter Canoy, Kazem Rahimi
Paper Link : https://arxiv.org/abs/2202.03487

 

 

  • BEHRT를 unbiased causal inference를 위한 exposure group사이의 feature extraction에 사용
  • BEHRT의 feature를 활용하여 risk ratio(RR)의 초기값을 예측하기 위해 다음 두 task의 loss로 output 모델을 동시에 학습
    1) 기존 counterfactual regression(CFR)방법들의 접근과 같이 propencity와 conditional outcome을 prediction
    2) 마스크 된 환자의 static & temporal covariates를 prediction; Masked EHR modeling(MEM)
  • Cross Validated Targeted Maximum Liklihood Estimation (CV-TMLE)를 사용하여 unbias된 RR을 추론
  • 기존 CFR 방법(Dragonnet, TARNET)들 대비 더 나은 RR 예측 성능을 보여줌
  • 데이터가 많을땐 MEM이 예측성능 향상에 큰 역할을 하지만, 데이터가 작을땐 MEM의 사용보다 casual inference방법론이 성능에 더 큰 영향을 미침 

Author : Pedro A. Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau Moya, Joel Veness, Jonas Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, Tom Everitt, Corentin Tallec, Emilio Parisotto, Tom Erez, Yutian Chen, Scott Reed, Marcus Hutter, Nando de Freitas, Shane Legg
Paper Link : https://arxiv.org/abs/2110.10819

 

 

  • Sequential interaction에 대한 모델을 만들 땐, 단순 prediction loss만으론 self-delusion이 생기는 문제에 대한 DeepMind의 article.
  • Delusion 문제를 다루기 위해 sequential 모델의 observation 분포와 action분포는 분리하여 학습해야하며, action의 probability에 대해선 intervention을 모델링하는 'counterfactual teaching'을 해야 delusion을 해소할 수 있다고 설명.
  • 이 sequential 모델은 $\mathrm{RL}^2$와 같은 memory-based meta learning으로 학습이 가능함.
  • 하지만 중요한 점은 위 설명은 online interaction이 가능한 경우에 대한것이고, offline learning의 경우 아직 open problem임을 설명.

 

개인적인 생각

  • 주 저자들이 Deepmind Safety Analysis이다.
  • 익히 알려진 'causal inference' 문제를 foundation model을 지향하는 관점에서 officially 정리해주었다.
  • Offline learning에선 unobserved confounder가 있을 땐, observation 또한 단순 'factual teaching'기반의 prediction 문제로 학습할 경우 selection bias에 의한 delusion이 생기므로 주의해야한다.

Author  : Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, Marco Hutter
Paper Link : https://www.science.org/doi/10.1126/scirobotics.abk2822

 

Contributions

1. Context based meta-RL을 활용하여 예상치 못한 or 노이즈가 강한 환경에서의 4족보행 로봇의 real-world robustness 구현

  • Recurrent belief encoder가 센서로는 측정되지 않는 true dynamics에 대한 정보를 내포하는 latent task belief를 추론하고, 이를 RL policy가 활용
  • Attentional gate를 사용하여 prioprioception(고유수용성 감각; 로봇자체의 움직임에 대한 센서) 과 exteroception(외수용성 감각; 외부환경에 대한 센서)의 multi-modal 센서에대한 상황에 따른 선택적 활용

2. 시뮬레이션의 이점을 활용한 privileged learning기반의 zero-shot sim-to-real transfer learning

  • 현실적인 조건을 가정한 충분히 다양한 물리적 환경을 시뮬레이션상에서 미리 학습
  • 이상적인 조건에서 학습되는 teacher policy와 현실적인 조건에서 teacher policy가 학습한것을 knowledge distillation하는 student policy

 

  • 3 단계에 걸쳐 zero-shot sim-to-real transfer learning을 구성
  • Step1: Teacher policy training
    - 랜덤하게 생성된 지형에서 명령으로 준 랜덤 target velocity와의 차이를 reward로 PPO알고리즘에 주어 학습
    - Teacher policy의 입력으로는 1. 속도 command, 2. proprioception센서 정보, 3. exteroception 센서 정보 4. previleged 정보 (ex. 마찰력과 같은 환경의 true dynamics)
    - 시뮬레이션을 활용하여 이상적인 정보를 줌으로써, RL알고리즘이 충분히 optimal에 가까운 policy를 학습하도록 유도  
  • Step2: Student policy training
    - Student policy의 입력으로는 1. 속도 command, 2. proprioception센서 정보, 3. 노이즈가 들어간 exteroception 센서 정보
    - 충분하지 못한 정보에서 scratch로 좋은 RL policy를 학습하기보다, 이미 학습한 좋은 tearch policy를 supervised learning으로 distill하여 효율적으로 학습; privileged learning
    - Prorioception정보와 extroception정보로부터 unobervable state에대한 belief를 추론하기위해 recurrent belief state encoder를 제안
    - Belief encoder가 좋은 latent space를 학습하도록 하기위해, previleged 정보와 true exteoception정보에 대한 reconstruction loss를 사용
  • Step3: Deployment
    - 실제 로봇에 학습한 student policy를 decoder를 제외하고 deploy
    - Context based meta-RL인 만큼 fine tunning이나 optimization 없이 실시간으로 real-world에 adaptation가능

 

  • Exteroception정보는 경우에 따라 틀리거나 얻지못할 수 있으므로, 필요에 따라 exteroception정보에서 의미있는 정보를 선별하여 쓰기위하여 attention gate를 사용한 gated encoder 적용
  • Attention gate는 최종 belief state에 어느정도의 exteroception정보를 담을지를 조절

 

  • Autoencoder를 사용하여 representation learning을 한 만큼, decoder를 사용하여 internal belief를 시각화 가능
  • 아래 그림에서 빨간 점은 policy에 입력으로 들어가는 실제 지면높이 정보 파란 점은 decoder에 의해 복원된 지면높이에대한 agent의 belief
  • A) 스펀지 장애물을 밟기전엔 지면 높이가 높다고 생각하고 있다가, 스펀지를 밟자으면서 들어오는 시계열의 푹신한 반응정보로부터 encoder는 실시간으로 평평한 지면 인것으로 belief가 변경
  • B) 투명한 장애물을 exteroception 센서가 인식못해 평평한 지면이라고 생각하다가, 상자를 밟는 순간 지면의 높이가 있는것으로 belief가 변경
  • D) 센서가 완전히 가려진 상태에서도 지면이 경사졌다고 판단다는 belief가 형성되며, 이는 사람이 걸으며 주변환경이 어두워질 경우 시각에서 체성감각으로 주의를 옮겨 지형지물을 판단하는것과 유사
  • E) 미끄러운 지면의 장애물을 걸을경우, 미끄러지는 만큼의 연장된 너비의 지면에 대한 belief가 형성하는 동시에 마찰의 변화 역시 추정 

 

  • 실제 real-world 환경에서도 넘어짐 없이 robust하게 동작하는 영상

 

 

Author: Ioana Bica, Ahmed M Alaa, Mihaela van der Schaar
Paper Link: https://arxiv.org/abs/1902.00450

Talk in ICML2020: https://icml.cc/virtual/2020/poster/6131

Talk in van der Schaar Lab's Yutube Channel:  https://www.youtube.com/watch?v=TNPce1zd6rE 

Code: https://github.com/ioanabica/Time-Series-Deconfounder

 

 

0. Abstract

  • 의료분야에서 treatment effect를 추론하는것은 중요하지만, 지금까지의 추론 방법들은 모두 'no hidden confounder'라는 비현실적이고 결과적으로 추론에 bias를 야기하는 가정을 전제로 함.
  • 본 연구에서는 시간에 따른 다중 치료 환경에서 multi-cause hidden confounder가 존재할때의 treatment effect를 추론하기위한 Time Series Deconfounder를 제안함.
  • Time series Decounfounder는 multitask output의 RNN을 factor model로 사용하여 multi-cause unobserved confounder를 대체하는 latent variable을 추론하고 이를통해 casual inference를 수행함.  
  • 이론적 분석과 함께 시뮬레이션 및 실제 MIMIC III데이터를 사용하여 알고리즘의 효과성을 검증함.

1. Introduction

  • 연속적으로 처방된 치료에 따른 환자 개인의 치료 효과를 예측하는것은 매우 중요한 문제임.
  • 최근 이러한 정보를 담고있는 observational 데이터 역시 빠르게 증가하고 있음.
  • 하지만 기존의 방법들은 모든 confounder가 관측가능하다는 대체로 비현실적인 상황을 가정하고있어 예측에 bias가 생김.
  • 예를들어 암의 진행에대한 항암제의 효과를 예측할 때 환자의 약에대한 내성형성이나 누적되는 독성을 고려하지 않는것은 예측결과에 bias를 초래.
  • 하지만 내성이나 독성은 관측이 어렵고 관측이 되더라고 후향적인 EHR과 같은 후향적인 관측데이터에는 기록되어있지 않은 경우가 대부분.
  • 본 연구에선 Wang & Blei (2019a)의 연구에서 고안된 'static 셋팅에서의 multiple treatment를 활용하여 hidden confounder를 deconfounding하는 방법'을 개선하여 longitudinal 셋팅에서의 time-varying hidden confounder를 deconfounding하는 Time Series Deconfounder를 제안함.
  • 시계열 환경에서 unobserved confounder의 대체재로서 letent variable을 학습하는 첫번째 시도.

 

2. Related Work

  • 시간에 따라 변하는 치료에 대한 Potential outcomes
    - 지금까지 시계열 데이터에 대한 counterfacutal inference로는 G-formula, G-estimation, MSM, R-MSN, balaced representation 등이 있었지만 모두 hidden confounder가 없다고 가정.
    - 연속성 데이터에대한 treatment effect 연구들도 있어왔으나 여기선 이산 환경을 다룸.
    - Unmeasured confounder에 대한 potential impact를 평가하기위한 sensitivity anlysis방법들도 고안되어옴.
  • Hidden confounder 추론을 위한 latent variable 모델
    - Multi-cause 환경에서 hidden confounder를 추론가능한 latent variable로 대체하고 추론된 latent variable로 causal inference를 수행하는식의 deconfounder 접근은  Wang & Blei (2019a, link)에서 제안된 바 있음.
    - 해당 논문은 static treatment 문제를 다루고 있으나, 본 논문은 이와 달리 time-varying treatment문제를 다루기 위해 RNN을 factor model로 사용하는 deconfounder 구조를 제안함. 

 

3. Problem Formulation

  • $\mathbf{X}_{t}^{(i)} \in \mathcal{X}_{t}$: random variable, (환자 $i$에 대한; 이후 생략) time-dependent covariates
  • $\mathbf{A}_{t}^{(i)}=\left[A_{t1}^{(i)}{\cdots}A_{tk}^{(i)}\right]\in\mathcal{A}_{t}$: 시간 $t$에서의 가능한 $k$가지 treatments
  • $\mathbf{Y}_{t+1}^{(i)}\in\mathcal{Y}_{t}$: 관측된 outcomes
  • $\tau^{(i)}=\left\{{\mathbf{x}_t^{(i)}},{\mathbf{a}_t^{(i)}},{\mathbf{y}_{t+1}^{(i)}}\right\}_{t=1}^{T^{(i)}}$: 이산시간 $T^{(i)}$ 동안 수집된 trajectory 샘플
  • $\mathcal{D}=\left\{{\tau^{(i)}}\right\}_{i=1}^{N}$: $N$명의 환자에 대한 EHR 데이터
  • $\overline{\mathbf{A}}_t=(\mathbf{A}_1,\cdots,\mathbf{A}_t)\in\overline{\mathcal{A}}_t$: 시간 $t$까지의 treatment history
  • $\overline{\mathbf{X}}_t=(\mathbf{X}_1,\cdots,\mathbf{X}_t)\in\overline{\mathcal{X}}_t$: 시간 $t$까지의 covariates history
  • $\mathbf{Y}(\overline{a})$: 가능한 treatment course $\overline{a}$에 대한 potential outcome (factual & counterfactual)
  • 아래의 Individualized treatment effect (ITE), 즉 환자 개인의 covariate history와 treatment history가 주어졌을때의 potential outcome, 을 추론하는것이 이 연구의 목표

$\mathbb{E}[\mathbf{Y}(\overline{a}_{\geq{t}}){\vert}\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]$

  • 아래 세 가지 가정 하에서는 bias가 생기지 않아 위 potential outcome에 대한 추론은 우항의 관측된 outcome에 대한 regression과 동치

 $\mathbb{E}[\mathbf{Y}(\overline{a}_{\geq{t}}){\vert}\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]=\mathbb{E}[\mathbf{Y}{\vert}\overline{a}_{\geq{t}},\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]$

  Assumption 1. Consistency

  Assumption 2. Positivity (Overlap)

  Assumption 3. Sequencial strong ignorability (no hidden confounders)

$\mathbf{Y}(\overline{a}_{\geq{t}}){\perp\!\!\!\!\perp}\mathbf{A}_t\vert\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_{t}$

  • 하지만 세번째 가정은 좌변의 counterfactual로 인해 테스트가 불가능하며 현실적이지 않아 여기서는 hidden confounder가 있는 보다 현실적인 문제를 다루고자 함.
  • 따라서 위에서 언급한 동치는 성립하지 않음.

$\mathbb{E}[\mathbf{Y}(\overline{a}_{\geq{t}}){\vert}\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]\neq \mathbb{E}[\mathbf{Y}{\vert}\overline{a}_{\geq{t}},\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]$

  • 대신 Wang & Blei (2019a)의 접근을 확장하여 시간에 따른 다중 treatments를 활용한 sequencial latent variable $\overline{\mathbf{Z}}_t=(\mathbf{Z}_1,\cdots,\mathbf{Z}_t)\in\overline{\mathcal{Z}}_t$ 을 추론하고 관측되지 않은 confounders로서 대체하고자 함.

 

4. Time Serise Deconfounder

  • 본 연구에서 제안하는 Time Series Deconfounder의 본질적인 아이디어는 multi-cause confounder로 인한 treatment들 사이의 종속성이 있다는것.
  • 이 종속성을 활용하여 시간에 따라 바뀌는 treatment로 부터 hidden confounder를 추론함.

4.1. Factor Model

  • Time Series Deconfounder는 시간 $t$이전까지의 history $\overline{\mathbf{h}}_{t-1}$로부터 시간 $t$에서의 unobserved confounder를 대체할  letent variable $z_t$을 추론하는 factor model $g$을 가짐.

$\mathbf{z}_t=g(\overline{\mathbf{h}}_{t-1})$

,where  $\overline{\mathbf{h}}_{t-1}=(\overline{\mathbf{a}}_{t-1},\overline{\mathbf{x}}_{t-1},\overline{\mathbf{z}}_{t-1})$

  • 이를 그래프로 나타내면 위 그림$(a)$와 같으며, latent variable  $\mathbf{z}_t$는 시간 $t$에서의 treatment들에 대한 multi-cause unobserved confounder를 대체하는 역할로서 나타낼 수 있음. 
  • Multi-cause unobserved confounder로 인한 treatment들 사이의 종속성으로 인해 factor model을 사용하여 latent variable의 sequence $\overline{\mathbf{Z}}_t$를 추론 할 수 있음.
  • 이때, latent variable $\mathbf{Z}_t$는 모든 multi-cause confounder를 내포하고 있음을 보장 (treatment사이의 종속성을 활용한 귀류법).
  • 즉, 위 그림$(b)$에서와 같이 또다른 multi-cause confounder $V_t$는 존재하지 않음.
  • 하지만 $L_t$와 같은 single-cause confounder가 없는것은 보장할 수 없으므로 다음을 새롭게 가정하고, 위에서 언급한 기존 방법들에서 사용한 세가지 가정 중 세번째 가정을 대체.

  Assumption 3. Sequential single strong ignorability (no hidden single cause confounders)

$\mathbf{Y}(\overline{a}_{\geq{t}}){\perp\!\!\!\!\perp}{A}_{tj}\vert\mathbf{X}_{t},\overline{\mathbf{H}}_{t-1}$

  • 물론 이 가정 역시 여전히 테스트가 불가능하지만, 관측가능한 treatment의 갯수가 증가함에 따라 hidden confounder가 하나의 treatment에만 영향을 줄 가능성은 급격히 줄어듬.
  • Wang & Blei (2019a)에 따르면 $\mathbf{Z}_t$의 차원이 treatments의 갯수보다 작을경우 가정2. Positivity또한 실질적으로 만족가능.
  • Fitting된 factor model이 얼마나 정확하게 validation set 환자의 treatment분포를 예측하는지를 평가하기위해 predictive check로서 각 시간 $t$에서 $M$개의 예측 샘플과 실제treatment 사이의 $p$-value를 아래와 같이 계산.

$\frac{1}{M}\sum_{i=1}^{M}\mathbf{1}(T(a_{t,rep}^{i})<T(a_{t,val}))$

,where $T(a_t)=\mathbb{E}_z[\mathrm{log}\,p(a_t{\vert}Z_t,X_t)]$ is test statistic and $\mathbf{1(\cdot)}$ is indicator function

  • Fitting이 잘 된 경우 $p$-value는 0.5에 가까움.

4.2. Outcome Model

  • Factor model이 잘 fitting된 다음 스텝으로 Time Series Deconfounder는 아래의 좌변의 시간에 따른 individualized treatment effect를 추론하기위한 outcome model을 우변과 같이 fitting.

$\mathbb{E}[\mathbf{Y}(\overline{a}_{\geq{t}}){\vert}\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]=\mathbb{E}[\mathbf{Y}{\vert}\overline{a}_{\geq{t}},\overline{\mathbf{A}}_{t-1},\overline{\mathbf{X}}_t]$

  • Time Series Deconfounder의 uncertainty는 factor model에서 시간에 따라 샘플된 sequential latent variable $\hat{\bar{\mathbf{Z}}}_t=(\hat{\mathbf{Z}}_1,\cdots,\hat{\mathbf{Z}}_t)$ 을 다시 반복 샘플하여 구한 각각의 outcome들의 variance로 판단함.
  • 만약 treatment effect가 부정확하여 non-identifiable할 경우엔 이 variance가 커짐.
  • 또한 본 연구에서 제안하는 hidden confounder문제를 다루기 위해 latent variable를 추론하는 접근은 treatment effect의 bias를 명백히 낮추지만, Wang & Blei (2019a)에 따르면 hidden confounder가 없는 상황에선 기존 방법 대비 variance가 상대적으로 커져 free lunch는 아님. 

 

5. Factor Model over Time in Practice

  • 시계열 문제를 다루고 있으므로 기존의 PCA나 Deep Exponential Families을 사용하는 대신 아래 그림과 같이 RNN, 여기서는 특히 LSTM을 factor model로서 사용함.

  • 즉, RNN을 사용하여 환자의 시간 $t$까지의 history로 부터 시간 $t$에서의 latent variable을 추론.

$\mathbf{Z}_1=\mathrm{RNN}(\mathbf{L})$

$\mathbf{Z}_t=\mathrm{RNN}(\overline{\mathbf{Z}}_{t-1},\overline{\mathbf{X}}_{t-1},\overline{\mathbf{A}}_{t-1},\mathbf{L})$

  • RNN의 출력사이즈는 $D_Z$이며 $\mathbf{L}$은 학습가능한 initial paramter.
  • RNN에서 추론된 Latent variables $\mathbf{Z}_t$와 관측된 covariates $\mathbf{X}_t$에 조건부 독립인 treatment $\mathbf{A}_t=[A_{t1},\cdots,A_{tk}]$를 추론하기위해서 treatment 개수 $k$만큼의 single FC MLP레이어를 RNN의 출력단에 multitask output으로 붙임.

$A_{tj}=\mathrm{FC}(\mathbf{X}_t, \mathbf{Z}_t;\theta_j)$

  • Binary treatment의 경우엔 출력레이어에 sigmoid activation을 사용함.
  • Factor model의 확률적인 특징을 구현하기위해서 위 그림의 별이 그려진 부분에 $variational\,dropout$(GAL & Ghahramani, 2016a)을 사용하였고, 이에 따른 latent variable의 샘플링이 가능해짐.
  • 위와 같은 구현으로 RNN으로 하여금 $\overline{\mathbf{X}}_t$, $\overline{\mathbf{Z}}_t$ 및 $\overline{\mathbf{A}}_t$사이의 복잡환 관계를 학습도록 할 수 있지만, 이 과정에서 predictive check가 반드시 필요하다는것에 주의.

 

6. Experiments on Synthetic Data

  • 제안한 Time Series Deconfounder를 검증하고자 합성데이터를 사용함.
  • 실제 데이터를 사용한 검증은 hidden confounder를 알 수 없으므로 불가능.

6.1. Simulated Dataset

  • 5000명의 환자에 대한 20~30 스텝의 가상데이터를 treatments, covariates, hidden confounders가 서로 영향을 미치는 $p$-order autoregressive 과정으로 생성함 (자세한 수식은 논문 참조).
  • 그리고 outcome은 covariates와 hidden confounder의 함수가 되도록 생성.

6.2. Evaluating Factor Model using Predictive Checks

  • 제안한 factor model 아키텍처가 treatment의 분포를 잘 학습하는지 확인하고자 합성데이터에 대해 아래 세 가지 모델의 predictive check를 수행함.
    1. 제안한 factor model; RNN + Multitask FC output (초록)
    2. RNN대신 MLP를 사용한 factor model (파랑)
    3. Multitask FC layer대신 단일 FC layer를 사용한 factor model (보라)

  • 실험 결과 RNN대신 MLP를 사용할 경우 시간이 지남에 따라 지속적인 distribution mismatch가 생김.
  • Multitask output은 treatment distribution을 파악하는데 도움은 되나 큰 영향을 주는것은 아님을 확인.
  • 즉, factor model에 RNN아키텍처를 사용하는것이 hidden confounder의 시간 의존적인 특성을 캡쳐하는데 있어 중요하며, 현재 스텝의 covariates와 confounders가 잘 명시될 경우 treatment distribution을 학습할 수 있다고 결론.

6.3. Deconfounding the Estimation of Treatment Responses over Time

  • Time Series Deconfounder가 confounder에 의한 bias를 잘 deconfounding하는지를 다음의 두 outcome model을 사용하여 검증함. 
  1. Standard Marginal Structural Models (MSMs)
    - Logistic regression으로 구한 inverse probability of treatment weighting(IPTW)을 사용하여 confounder가 balance된 pseudo-population을 생성하는 단계와, 이렇게 생성된 pseudo-population으로부터 treatment reponse를 linear regression하는 단계의 두 가지 스텝으로 구성된 selection bias 대응방법.
    - 이름에서 'marginal'은 counfounder control의 의미이며, 'structural'은 potential outcome framework를 의미함.
    - MSMs에 대한 자세한 내용은 다음 두 강의를 참고
    (https://www.youtube.com/watch?v=7NjIQTzADgQ)
    (https://www.coursera.org/lecture/crash-course-in-causality/marginal-structural-models-EUpei)
  2. Recurrent Marginal Structural Networks (R-MSNs; Lim et al., 2018)
    - MSMs와 접근은 같지만 RNN을 사용하여 propensity score를 추론하고 treatment response 역시 RNN을 사용하여 추론하는것이 차이.
    - $\mathrm{RNN}(\overline{\mathbf{X}}_t,\overline{\mathbf{Z}}_t,\overline{\mathbf{A}}_t)$ 와 같이 구현하며, RNN을 사용하여 추정한 propensity weights에 따라 weight를 각 환자에 주어 loss함수를 계산.
  • 평가를 위해 한 스텝 다음의 treatment response를 예측하는 테스크를 사용하였으며, 두 outcome model에 대한 자세한 분석을 위해 아래 5가지 경우를 비교
    1) Confounded: hidden confounder를 고려하지 않고 관측데이터를 그대로 사용한 경우. 
    2) Deconfounded ($D_z=1$): 실제 hidden confounder의 크기인 1과 동일한 크기의 latent variable $\hat{\overline{\mathbf{Z}}}_t$를 사용한 경우.
    3) Deconfounded ($D_z=5$): 실제 hidden confounder의 크기인 1과 다른, 크기 5의 latent variable $\hat{\overline{\mathbf{Z}}}_t$를 사용한 경우.
    4) Deconfounded w/o $X_1$: Assumption 3를 위반한 경우로 single cause confounder $X_1$를 covariate에서 제거하여 hidden confounder로 가정한 경우.
    5) Oracle: 합성데이터에서의 실제 ground truth hidden confounder $\overline{\mathbf{Z}}_t$를 outcome 모델에 넣어준 경우. 

  • 위 결과 그래프를 보면 Deconfounded에서 Confounded보다 Oracle과 유사한 결과를 보여주어 Time Series Deconfounder가 treatment response에 대해 unbiased estimation을 하는것을 확인함. 
  • Deconfounded 두가지 경우, 서로 크게 차이나지 않는데서 hidden counfounder 크기에 대한 model misspecification과 관계없이 robust한 결과를 확인함.
  • Single hidden confounder가 있을 경우엔 bias를 해결하지 못하는데서 Assumption3가 중요하단것을 확인함. 
  • 5가지 경우 모두 RNN기반의 R-MSNs가 MSMs보다 뛰어난 정확성을 보여줌.

 

7. Experiments on MIMIC III

  • Time Series Deconfounder를 실제 데이터에 대한 검증을 위해 EHR 오픈데이터인 MIMIC III의 6256명의 환자 데이터에 적용함.
  • 특히 폐혈증 환자에서 항생제, 혈압상승제, 기계식 호흡장치의 총 3 가지의 treatment가 백혈구 개수, 혈압, 산소포화도의 각 3 가지 response에 어떻게 영향을 미치는지를 실험.
  • 실제 데이터인만큼 폐혈증 외의 질병에 대한 cormorbidity나 몇 lab test가 기록에 없다던지의 hidden confounder가 존재하며, Oracle 경우를 확인 불가능함.

  • 3 가지 response실험 모두에서 Confounded보다 Time Series Deconfounder를 적용할 경우 정확도가 상승하는것을 확임함.
  • 합성데이터에서와 마찬가지로 RNN기반의 R-MSNs가 MSMs보다 뛰어난 정확성을 보여줌.
  • 추후 의료진의 의견을 참고한 심층된 검증 필요.

 

8. Conclusion

  • 관측된 시계열 환자 데이터에서 individualized treatment effect를 추론하는 기존 방법들에선 모두 hidden confounder가 없다는 가정을 했으나, 시계열 데이터에선 시간에 따라 환자의 상태가 계속 바뀌는데가 treatment를 결정하는 복잡도가 올라가 특히나 더 비현실적인 가정임.
  • 이에 본 연구에선 hidden confounder를 대체가능한 latent variable을 추론하는 Time Series Deconfounder를 제안하고 RNN, multitask output, variational dropout을 사용하여 구현함.
  • 합성데이터와 실제데이터를 사용하여 multi-cause hidden confounder가 있을때의 Time Series Deconfounder의 bias 제거 효과를 보여줌.

 

9. Appendix

  • (Table 3.) Hidden confounder가 treatment와 outcome에 미치는 영향이 커질수록, 더 큰 capacity의 모델이 필요.
  • (D.2) RNN기반의 treatment effect estimation이 시간에 따라 변화하는 treatment policy에 보다 robust.
  • (Figure 6.) 실제 hidden confounder의 갯수와 같게 $D_Z$를 설정하거나 overestimate할 때 treatment response에 대한 예측도가 향상함.

Author: Ioana Bica, Daniel Jarrett, Alihan Hüyük, Mihaela van der Schaar
Paper Link: https://openreview.net/forum?id=h0de3QWtGG 

Talk in ICLR2021: https://iclr.cc/virtual_2020/poster_BJg866NFvB.html

Rating: 8, 7, 6, 5

+ Recent posts